

<u>Application Notes</u> <u>Clarinet</u>

-Using Clarinet for Analog Measurement -

1. INTRODUCTION

The data in any B-channel (basic or primary rate) can be directed to the analog/digital ports on the ISDN pod, or to the digital port (TRANSDATA interface).

These interfaces can be used as:

- permanent connections (Data Link, TRANSDATA, TRANSIT or the two Cofidec interfaces). The permanent connections are initialised upon profile launching and set for the entire duration of the profile.
- switched connections established by the Q931 simulator for outgoing and incoming communications.

2. ANALOG PORT

Main Characteristics:

- input impedance $\geq 100 k\Omega$
- output level 0dB, on a 600Ω resistive load

The analog port uses standard integrated filter Cofidec from Mitel (MT8965 for A-Law). But the analog I/O lines are routed through an analog switch array and output buffers which can introduce little additional distortion. Unfortunately, ACACIA doesn't provide any global performance data-sheet about analog I/O port because only functional tests are done during manufacturing.

The characteristics of the Cofidec are given hereafter:

• µ law Transfer Characteristic:

• A law Transfer Characteristic:

AC Electrical Characteristics - Transmit (A/D) Path - Volvages are with respect to GNDD unless otherwise stated. T_A=0 to 70°C, V_{DD}=5V±5%, V_{DE}=5V±5%, V_{PA}=2.5V±0.5%, GNDA=GNDD=0V, Clock Frequency = 2.048MHx, Filter Gain Setting = 0dB. Outpute unloaded unless otherwise specified.

		Chara	Characteristics		Min	Тур	p* 1	Max	Unit	5 Test Conditions	
1		Analog Input a the overload d the codec	Analog Input at V_X equivalent to the overload decision level at the codec			4.8: 5.0	29		V _{PP} V _{PP}	Level at codec: µ-Law: 3.17 dBm0 A-Law: 3.14 dBm0 See Note 6	
2	1	Absolute Gain	Absolute Gain (OdB setting)		-0.25	+	+	0.25	dB	0 dBm0 @ 1004 Hz	
3	1	Absolute Gain settings)	Absolute Giain (+1dB to +7dB settings)		-0.35		+	0.35	dB	from nominal, © 1004 Hz	
4	1	Gain Variation	Gain Variation With Temp			0.0	11		dB	T _A =0°C to 70°C	
	١.		With Supplies	GAXS		0.0	14		dB/V	r	
5		Gain Tracking (See Figure 12	(Method 1)	GT _{X1}	-0.25 -0.25		+	0.25 0.25 0.50	dB dB dB	Sinusoidal Level: +3 to -20 dBm0 Noise Signal Level: -10 to -55 dBm0 -55 to -60 dBm0	
	G		CGITT G712 (Method 2) AT&T	GT _{x2}	-0.25 -0.50 -1.50		+	0.25 0.50 1.50	dB dB dB	Sinusoidal Level: +3 to -40 dBm0 -40 to -50 dBm0 -50 to -55 dBm0	
б		Quantization Distortion (See Figure 13) CCITTG712 (Method 1)	Daxi	28.00 35.60 33.90 29.30 14.20				dB dB dB dB dB	Noise Signal Level: -3 dBm0 -5 to -27 dBm0 -34 dBm0 -40 dBm0 -55 dBm0	
		Quantization Distortion (cont'd) (See Figure 13)	CCITT G712 (Method 2) AT&T	Dava	35.30 29.30 24.30				dB dB dB	Sinusoidal Input Level: 0 to -30 dBm0 -40 dBm0 -45 dBm0	
7		ile Channel – C-message		N _{CX}			18	dB	mC0	µ-Law Only	
		loise Psophometric		N _{PX}			-67	dB	mOp	CCITT G712	
8		Single Frequency	ingle Frequency Noise				-56	56 dBm		CCITT G712	
9		Harmonic Distorti (2nd or 3rd Harm				-46		dB	Input Signal: 0 dBm0 @ 1.02 kHz		
10		Envelope Delay		D _{AX}			270	\square	μз	@ 1004 Hz	
11		Envelope Delay Variation With Frequency	1000-2500 Hz 600-3000 Hz 400-3200 Hz	D _{DX}		60 150 250			ы ы ы	Input Signal: 400-3200 Hz Sinewave at 0 dBm0	
12	A	Intermodulation Distortion	GGITT G712 50/60 Hz	IMD _{X1}			-55	'	dВ	50/60 Hz @ -23 dBm0 and any signal within 300-3400 Hz at -9 dBm0	
	A L O		CCITT G712 2 tone	IMD ₃₀₂			-41		dB	740 Hz and 1255 Hz @ -4 to -21 dBm0. Equal Input Levels	
	G		AT&T	IMD_{33}			-47		dB	2nd order products	
			4 tone	IMD_{X4}			-49		dB	3rd order products	
13		Gain Relative to Gain @ 1004 Hz (See Figure 10)	≤50 Hz 60 Hz 200 Hz 300-3000 Hz 3200 Hz 3300 Hz 3400 Hz 4000 Hz ≥4600 Hz	G _{RX}	-1.8 -0.125 -0.275 -0.350 -0.80		-25 -30 0.00 0.12 0.12 0.12 -0.10 -14 -32	5	48 48 48 48 48 48 48 48 48 48 48	0 dBm0 Input Signal Transmit Filter Response	
14		Grosstalk D/A to	GT _{RT}			-70		dB	0 dBm0 @ 1.02 kHz in D/A		
15		Power Supply Rejection	V_{DD} V_{EE}	PSSR₁ PSSR₂	33 35				dB dB	In put 50 mV _{FMAS} at 1.02 kHz	
16		Overload Distorti	Overload Distortion (See Fig.15)							Input frequency=1.02kHz	

ļ Typical figures are at 25°C with nominal ±5V supplies. For design sid only: not guaranteed and not subject to production testing. Note 5: OdBm 0=1.195 V_{RMS} for the µ-Law codec. OdBm 0=1.231 V_{RMS} for the A-Law codec.

AC Electrical Characteristics - Receive (D/A) Path - Voltages are with respect to GNDD unless otherwise stated. $T_A = 0$ to 70°C, $V_{DD} = 5V \pm 5\%$, $V_{EE} = 5V \pm 5\%$, $V_{R_A} = 2.5V \pm 0.5\%$, GNDA=GNDD=0V, Glock Frequency = 2.048MHz, Filter Gain Setting = 0dB. Outputs unloaded unless otherwise specified.

		Characteristics		Sym	Min	1	ſyp*	Max		Units		Test Conditions
1		Analog output at V _R equivalent to the overload decision level at codec		Vour		4	.829 .000			ν _ρ ν _ρ	P P	Level at codec: μ-Law: 3.17 dBm0 A-Law: 3.14 dBm0 R _L =10 KΩ See Note 7
2	1	Absolute Gain (OdB setting)		GAR	-0.25			+0.2	5	dE	3	0 dBm0 @ 1004Hz
3		Absolute Attenuation (-1dB to -7dB settings)			-0.35			+0.3	δ	dE	3	From nominal, © 1004Hz
4		Gain Variation	With Temp.	G _{ART}			0.01			dE	3	T _A =0°C to 70°C
			With Supplies	GARS			0.04			dBv	v	
5		Gain Tracking (See Figure 12)	CCITT G712 (Method 1)	GT _{R1}	-0.25 -0.25			+0.2	5	dB dB		Sinusoidal Level: +3 to -10 dBm0 Noise Signal Level: -10 to -55 dBm0
					-0.50	_		+0.5	0		3	-55 to -60 dBm0
	A N		CCITTG712 (Method 2) AT&T	GT _{R2}	-0.25 -0.50 -1.50			+0.2 +0.5 +1.5	25 10 10	dE dE dE	3	Sinusoidal Level: +3 to -40 dBm0 -40 to -50 dBm0 -50 to -55 dBm0
6	L O G	Quantization Distortion (See Fig. 13)	CCITT G712 (Method 1)	D _{oR1}	28.00 35.60 33.90 29.30 14.30					dE dE dE dE	3 3 3 3	Noise Signal Level: -3 dBm0 -6 to -27 dBm0 -34 dBm0 -40 dBm0 -55 dBm0
			CCITT G712 (Method 2) AT & T	D _{ore2}	36.40 30.40 25.40					dE dE dE	3	Sinusoidal Input Level: 0 to -30 dBm0 -40 dBm0 -45 dBm0
7		Idle Channel	C-message	NOR				12		dBm	CO	µ-Law Only
		Noise	Psophometric	NPB				-75	;	dBm	Юр	CCITT G712
8		Single Frequency	y Noise	NSFR				-56	6 dBn		nO	CCITT G712
9		Harmonic Distortion (2nd or 3rd Harmonic)						-46	;	dE	3	Input Signal 0 dBm0 at 1.02 kHz
10		Intermodulation Distortion	CCITT G712 2 tone	IMD _{F2}				-41	d		3	
			AT & T	IMD _{FS}				-47	·	dE	3	2nd order products
			4 tone	IMD _{F4}				-49)	dE	3	3rd order products
11		Envelope Delay		D _{AR}				210	µs ©		۰ ی	1004 Hz
12		Envelope Delay 1000-2600 Hz Variation with 600-3000 Hz Frequency 400-3200 Hz		Dors			0 5			µs µs	Inpu 400 sine	ut Signal: - 3200 Hz digital awave at 0 dBm0
13	A N A L O	Gain Relative to <200 Hz Gain © 1004 Hz 200 Hz (See Figure 11) 300-3000 Hz 3300 Hz 3400 Hz 4000 Hz ≥4600 Hz		G _{RR}	-0.5 -0.125 -0.350 -0.80).125).125).125).030 0.100 -14.0 -28.0		dB dB dB dB dB dB dB dB	0 dl Rec Filti Res	Bm0 Input Signal seive er spon <i>s</i> e
14	G	Crosstalk A/D to D/A		GT _{TR}				-70		dB	JB 0 dBm0 ⊚ 1.02 kHz in A/D	
15		Power Supply Rejection	V _{DO} V _{EE}	PSRR₃ PSRR₄	33 35					dB Inpu dB 1.0		ut 50 mV _{FMS} at 2 kHz
16		Overload Distortion (See Fig. 15)									Inp	ut frequency=1.02 kHz

Typical figures are at 25°C with nominal ±5V supplies. For design sid only: not guaranteed and not subject to production testing.
Note 7: 0dBm 0=1.195 V_{RMS} for µ-Low codes and 0dBm 0=1.231 V_{RMS} for A-Low codes.

Attenuation vs Frequency for Transmit (A/D) Filter:

3. TRANSDATA PORT

To make high-precision analog measurements, the digital interface (TRANSDATA) can be used to connect an highprecision external CODEC. Functional characteristics are based on ITU X24, electrical characteristics are defined by ITU V11 and mechanical characteristics are defined by ISO 4903.

The pod is a DCE, it provides timing information: S clock for signal element timing and B clock for byte timing. It operates in "burst isochronous" operation with a nominal bit rate of 2048kbits/s: R/T transitions occur on OFF/ON transition of the S clock, R/T are sampled on ON/OFF transition of S.

In normal "simulation mode" R is an output and T an input, in "analysis only mode" R and T are outputs. The S clock is held in the ON condition during idle time.

4. CONCLUSION

The solution chosen to make analog I/O measurement with CLARINET depends on the precision required. The highest accuracy will be achieved when using an external high-precision CODEC.